Electron trigger for p+p

Y. Akiba (KEK)

Electron trigger for p+p

- I propose to have electron trigger for the p+p run
 - EMCAL*RICH with EMCAL 2x2 threhold at 300 MeV
- This is almost ideal, little bias trigger for *ANY* electron measurement of interest
 - J/Psi → ee
 - ϕ , ρ , $\omega \rightarrow ee$
 - c **→**eX
- The low threshold (300MeV) can also be used as "minimum activity trigger" in the central arms.
- The expected rejection rate (200-300) is sufficient for this year's luminosity
- This trigger is required to detect/reconstruct D meson in this year
 - Tag "charm" event by single electron
 - − With this trigger, expected yield is about 300 D^0 → $K\pi$ per 1/pb
 - If the threshold is raised to 0.9 GeV, the yield will be down by factor of 10.
 This is because electron acceptance is decreased from 50% to 5%.

Effect to the high pt charged

Yield assu	ume 500/nb	of total inte	grated lumin	nosity	
Pt	ds(mb)	Yield	MB	4x4 2GeV	
2.0-3.0	0.15	5.3E+07	5.5E+05	0	
3.0-4.0	1.50E-02	5.3E+06	5.5E+04	1.2E+06	
4.0-5.0	2.30E-03	8.1E+05	8.5E+03	2.5E+05	
5.0-6.0	4.50E-04	1.6E+05	1.7E+03	5.8E+04	
Guestima	te of 4x4 2 (GeV efficien	СУ		
2.0-3.0	very small				
3.0-4.0	23%				
4.0-5.0	31%				
5.0-6.0	37%				

- With 2 GeV threshold for 4x4, pt=2.0-3.0GeV/c bin is hard to trigger. However, little spin asymmetry is expected at this pt bin.
- For high pt bin, 4x4 should have reasonable efficiency (20 to 40%).
- The efficiency is guesstimated as $0.6*(\langle E \rangle 2 \text{GeV})/\langle E \rangle$
- The originally proposed trigger also do not have good efficiency, either. It may have even worse efficiency for some pt bins because of a large leakage of hadronic energy outside of the trigger tile.